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Abstract: A definition of minimum distortion paths between two polyhedra in terms of continuous shape
measures (CShM) is presented. A general analytical expression deduced for such pathways makes use of
one parameter, the minimum distortion constant, that can be easily obtained through the CShM methodology
and is herein tabulated for pairs of polyhedra having four to eight vertexes. The work presented here also
allows us to obtain representative model molecular structures along the interconversion pathways. Several
commonly used polytopal rearrangement pathways are shown to be in fact minimum distortion pathways:
the spread path leading from the tetrahedron to the square, the Berry pseudorotation that interconverts a
square pyramid and a trigonal bipyramid, and the Bailar twist for the interconversion of the octahedron and
the trigonal prism. Examples of applications to the analysis of the stereochemistries of several families of
metal complexes are presented.

The regular Platonic polyhedra, semiregular Archimedean
polyhedra, and the planar regular polygons are fascinating
geometrical objects1-4 that have captivated the attention of
mankind from prehistoric times.5,6 Polyhedral models found in
Scotland have been dated in 2000 B.C.; in ancient Greece,
Archimedes, Plato, Euclid, and others studied in detail the
polyhedra; during the Renaissance, artists and polymaths such
as Dürer, Pacioli (with drawings from Leonardo), and Kepler
made extensive use of polyhedra, and their study was spread to
China and Japan in the early XVIIth century. In Chemistry, these
geometrical entities provide a simple and powerful way to
represent the spatial arrangement of groups of atoms as, e.g.,
those directly bonded to a central atom, starting from the
introduction of the tetrahedron by Van’Hoff and Le Bel to
describe the stereochemistry of organic molecules and of the
octahedron by Werner to explain the enantiomerism of metal
coordination compounds. We can find nowadays examples of
different kinds of molecules whose structures correspond to a

variety of polyhedra,7-13 from boranes to purely organic
molecules, fullerenes, coordination complexes, metal clusters,
or supramolecular arrangements. Yet many molecules show in
solution a dynamic behavior, undergoing a fast interconversion
between two polyhedral structures (polytopal rearrangement)
at room temperature, while many others exhibit in the solid state
structures that are intermediate between two of the highly
symmetric polyhedral shapes. A key question then is can we
define a general polytopal rearrangement pathway between two
symmetric geometries that occurs with the minimal loss of shape
or symmetry?

Shape and Symmetry Measures

To decide whether the loss of shape or symmetry is
minimized along a rearrangement path, we need to consider
them as continuous properties, in such a way that the loss of
shape or symmetry can be quantitatively evaluated. The
continuous symmetry and shape measures (CSM or CShM,
respectively) proposed by one of us14,15 comply with this
requirement, providing us with quantitative estimates of the
degree of distortion of a particular set of atoms from a

† Departament de Quı´mica Inorgànica and Centre de Recerca en Quı´mica
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predetermined structure, such as an ideal polyhedron. It seems
therefore adequate to try to describe the interconversion path
between two ideal polyhedra in terms of the corresponding shape
or symmetry measures.

At this point, it is important to clarify the subtle difference
between symmetry and shape measures when we evaluate
distortions from a polyhedron. Strictly speaking, a symmetry
measure (CSM) calibrates how far a structure is (see below for
a more detailed explanation) from a geometry that posseses the
symmetry operations of a certain symmetry group, whereas a
shape measure (CShM) tells thedistanceto a specific shape. It
must be noted, though, that when the reference shape is a regular
polyhedron (tetrahedron, octahedron, cube, icosahedron, or
dodecahedron), shape and symmetry are equivalent. This can
be exemplified by the cube, since all cubes are identical except
for differences in size and orientation in space, all cubes have
the Oh symmetry. When other polyhedra, such as bipyramids
or prisms, are considered, there are infinite shapes with the same
symmetry, and shape measures are different than symmetry
measures. As an example, consider the trigonal bipyramid. We
can build a variety of trigonal bipyramids by changing the ratio
between axial and equatorial distances to the center of the
bipyramid, all of them having the same symmetry (D3h).
However, each of these bipyramids has a different shape, since
they cannot be superimposed by the combined effect of a
translation, a rotation, and an isotropic expansion or contraction.
In summary, shape is a more restrictive criterion than symmetry,
and we will use from here on shape measures rather than
symmetry measures, even if in some cases the two may be
equivalent.

The calculation of the continuous shape measure of the
coordination sphere of a given atom, ABN-1 (referred from here
on as polyhedron Q), relative to an ideal polyhedron P requires
the knowledge of theN vectorsqbi containing the 3N Cartesian
coordinatesqk, as well as the corresponding vectors containing
the coordinatespk of the ideal polyhedron. The ideal shape is
then rotated, translated, and scaled in such a way as to minimize
the distance function in eq 1 (more details on the minimization
procedure are given below), which then gives theshape measure
of the investigated structure Q relative to the ideal shape P,
SQ(P). In eq 1,qb0 is the position vector of the geometric center
of Q.

By considering several alternative geometries withN - 1
vertexes, the coordination sphere Q can then be characterized
by its shape measures relative to a variety of reference polyhedra
with the same number of vertexes. As an example, for a
tetracoordinated atom, we can use the values ofSQ(Td), SQ(D4h),
andSQ(sawhorse), relative to the tetrahedron, square planar, and
sawhorse geometries, respectively. Focusing on only two shape

measures, we can represent in a scatterplot, e.g.,SQ(D4h) as a
function ofSQ(Td) for molecular models, experimentally deter-
mined structures or theoretically optimized ones. We call such
scatterplotsshape(or symmetry)mapsand have shown that
they provide a highly useful means of identifying structural
trends in tetra-,16 hexa-,17 or heptacoordinate18 transition metal
compounds. A shape map for tetracoordinate transition metal
compounds16 including more than 13 000 structural data is
shown in Figure 1 as an example. There, the perfect tetrahedron
corresponds to the (0, 33.33) point and the perfect square to
the (33.33, 0) point. Distortions from the tetrahedron toward
the square seem to have a lower limit that corresponds to an
increase in square symmetry (i.e., a decrease inSQ(D4h))
accompanied with the minimal possible distortion of the
tetrahedron (minimal value ofSQ(Td)).

Typical pathways for the interconversion of two ideal
polyhedra P and T, such as the spread distortion from tetrahedral
to square molecules (1), the Berry psedurotation of pentacoor-
dinate complexes (2), or the Bailar twist between the octahedron
and the trigonal prism (3), have been seen to appear in the shape
maps as curves of the type shown in Figure 2, representing a
lower limit for the shape measures of experimental structures.
In general, we consider the path for the interconversion of two
arbitrary polyhedra P and T with the same number of vertexes,
proceeding through a series of intermediate structures X that
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Figure 1. Positions of the structures of tetracoordinate transition metal
complexes in a shape map. The arrow indicates the path from the perfect
tetrahedron (shape measures 0 and 33.3) to the perfect square (shape
measures 33.3 and 0).

Figure 2. Generalized interconversion pathway between two polyhedra P
and T in the shape map referred to their ideal structures P and T.

SQ(P) ) min[∑i)1

N

|qbi - pbi|2

∑
i)1

N

|qbi - qb0|2] × 100 (1)
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are characterized by their shape measuresSX(P) andSX(T). We
then define theminimum distortion pathbetween P and T as
the one that has the minimum value ofSX(T) for a given value
of SX(P) within the interval 0e SX(P) e ST(P).

The curves representing minimum distortion paths in shape
maps have the following properties, regardless of the number
of vertexes of the polyhedra under study: (i) The shape
measures of two structures relative to each other are identical
and can be related to a constantkPT associated to those two
specific shapes (eq 2). (ii) The (0, 0) point is by definition
unreachable, since it would correspond to a structure that has
at the same time two different shapes, e.g., both perfect
tetrahedral and square planar. (iii) There is only one allowed
point at each coordinate axis, because the distance from a perfect
polyhedron (i.e., a zero value for one shape measure) to the
alternative one (i.e., the second shape measure) has a unique
value. These common features of such different paths as those
shown in1-3 will allow us in a later section to put them in the
same scale, thus offering a quite general description of
polyhedral rearrangement pathways.

In what follows, we will first review briefly the procedure
used to obtain the shape measures defined in eq 1, since the
meaning and nomenclature of the different parameters used will
be needed for the subsequent sections. We will then show that
all polyhedra withN - 1 vertexes and the same size can be
described as points on the surface of a hypersphere of fixed
radius. The path between two polyhedra can therefore be
described making use of a section of that hypersphere, and a
simple formula can be deduced that expresses the minimum
distortion pathway in terms of a constant that is characteristic
of the pair of polyhedra considered (theminimum distortion
angleor the relatedminimum distortion constant). The analytical
expression deduced will be shown to be in excellent agreement

with molecular models for the three most characteristic paths
(1-3). Furthermore, we will show that the determination of the
shape measure of a polyhedron relative to another one provides
a simple and efficient means of building molecular structures
along their interconversion path. In the same spirit with which
the shape measures provide information on the distance of a
given structure to a reference shape, we will then define a
deviation function relative to a given pathway that measures
how close a structure is from a given pathway, regardless of
the distance to the two extreme shapes. Finally, applications to
the analysis of experimental structural data of the deviation
functions will be shown. In addition, we provide as appendices
two additional interesting aspects of the minimal distortion
pathways: in Appendix 1, we will show under which circum-
stances a sum rule used earlier17 represents a reasonable
approximation to the analytical expression deduced, whereas,
in Appendix 2, we will discuss two cases in which the minimal
distortion angle in the shape hypersphere can be associated to
bond angles in the interconverted structures.

Calculation of Continuous Shape Measures

To deduce the minimum distortion paths for polytopal
rearrangements in terms of continuous shape measures it is
convenient first to briefly recall the procedure used to calculate
shape measures, while a more detailed description of the
algorithms can be found in the literature.19 The goal of the
computational procedure is to obtain the coordinatespk of an
ideal polyhedron P0 that is closest to a particular distorted
polyhedron Q with vertexes at the positions defined by theqbi

vectors, in order to calculate the shape measures from eq 1.
Such a process requires transformation of the ideal polyhedron
P0 to a related polyhedron P with the same shape but whose
size and orientation in space are adjusted in such a way as to
minimize its distance (in the sense of eq 1) to the distorted
polyhedron.

The algorithm for calculating the CShM’s consists of the
following steps:

(1) Both the original polyhedron and the reference one are
placed with their geometric centers at the origin of coordinates
(i.e., the coordinates of the origin in eq 1 areqbo ) 0B).19 Their
orientation and vertex labeling are either arbitrary or selected
for convenience of computation (but see below). It can be
demonstrated that once the problem and reference molecules
have been placed at the origin, no further translation is required
to minimize the distances between their vertexes.19

(2) Since the shape measures should be independent of size,
we size-normalize the two objects P0 and Q as follows:

(3) The reference polyhedron undergoes a rigid rotation to
minimize the distances between its vertexes and those of the
investigated molecule, giving a new set of coordinatespb′i ) R
pbi

o, whereR is a (3 × 3) unitary transformation matrix that
minimizes the distances between the two shapes.20 Note that P′
is also normalized as in eq 3.

(19) Pinsky, M.; Avnir, D.Inorg. Chem.1998, 37, 5575.

kPT ) xSP(T) ) xST(P) (2)

∑
k)1

3N

qk
2 ) ∑

k)1

3N

(pk
o)2 ) N (3)
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(4) At this point, we can define a distance function

(5) An isotropic scaling factor,AQP, is applied to thep′k
coordinates of the reference polyhedron,pk ) AQPp′k, that
minimizes the new distance function

(6) The process is repeated for all possible pairings between
the vertexes of the reference and the distorted polyhedron (i.e.,
the B atoms in an ABN-1 molecule), and the one that gives the
minimal distance functionsd andσ provides us with the closest
ideal polyhedron P to our problem polyhedron Q. Such a
minimal distance,σQ(P), gives the shape measure of Q relative
to P,SQ(P), through eq 6, where the denominator results from
eq 1 when the normalization condition (eq 3) is taken into
account. The shape measureSQ(P) is adimensional and can adopt
values between 0 and 100, in contrast withσQ(P) that has units
of distance and can vary between 0 andxN.

For the calculation of the shape measures reported in this
paper, we have used the program SHAPE21 that can be obtained
from the authors upon request.

Shape Hypersphere and Minimum Distortion Pathway

Before dealing with the minimum distortion pathway between
two polyhedra, we need to establish the framework in which it
will be defined. By comparing eq 3 with the equation of a sphere
(x2 + y2 + z2 ) r2), one realizes that a figure P′ (e.g., a regular

square, with coordinatesp′k) can be viewed as a point on a
hypersphere of radiusxN in 3N-dimensional space. Other
size-normalized figures with the same shape are related to P′
through rigid rotations and correspond to other points on the
hypersphere. If we search for the figure with another ideal shape
(e.g., a tetrahedron) that is closest to P′ in the CShM sense, let
us say T′, it will occupy another point on the surface of the
hypersphere, with coordinatesqk. By definition of the CShM,
all other structures with the same shape, related to T′ by rotation,
are farther away from P′ than T′. Therefore, the shortest path
between these two figures, T′ and P′, composed of all
intermediate size-normalized figures X (see4) corresponds to
the circular section of our hypersphere.

Let us first consider the two extreme shapes P′ and T′ only
(5). The distance between these two size-normalized structures,
dT(P), is thus the base of an isosceles triangle with an angleθ.
Since the scaling factor applied to P′ in order to minimize the
distance between polyhedra P and T,APT, is isotropic, when
applied to all thep′k coordinates, it takes us radially to point P
and the OPT′ angle must be 90° in order to makeσT(P)
minimum. Several important conclusions arise: (a) The separa-
tion between structures T′ and P′ in the hypersphere is given
by a constant angleθPT independently of whether the scaling
factor has been introduced or not, and we will refer to it as the
minimum distortion anglefor the interconversion of polyhedra
P and T. (b) The scaling factorAPT must always be less than or
equal to one. (c) Since sin(θPT) andσ are related by eq 7 and
σT(P) e xN, the angleθ must be in the range 0e sin(θPT) e
1, and we need only consider in what follows angles between
0 and 90°. (d) From5, it can be deduced that the scaled and
unscaled minimum distances are related by the simple expression
in eq 8.

If we wish to derive the analytical expression of the
interconversion pathway in terms of shape measures, we need
only to find a general expression for the position of the general
point X in terms of the distance functionsσX(T) andσX(P). Since
the scaling factor that is applied to the reference polyhedra when
calculating the shape measure of each point X along the path is
different, it is much simpler to use the anglesR andâ to define
the position of X relative to P and T, and these must obey eq
9. The different distances involved (dX(P), dX(T), dT(P), dP(T),
and the corresponding scaled distancesσ), as well as the shape
measuresST(P), SP(T), SX(P), andSX(T), are fully determined
by the anglesR, â, andθPT.

The trigonometric relationships betweenσX(P) and R and
betweenσX(T) andâ deduced from6 (remember the radius of

(20) Arun, K. S.; Huang, T. S.; Blostein, S. D.IEE Trans. Pattern Anal. Machine
Intel. 1987, PAMI-9, 698.

(21) Llunell, M.; Casanova, D.; Cirera, J.; Bofill, J. M.; Alemany, P.; Alvarez,
S.; Pinsky, M.; Avnir, D.SHAPE(1.1); Barcelona, 2003.

d2 ) ∑
k)1

3N

(qk - p′k)
2 (4)

σ2 ) ∑
k)1

3N

(qk - pk)
2 (5)

SQ(P) )
σQ

2 (P)

N
100 (6)

sin θPT )
σT(P)

xN
(7)

dT
2(P) ) 2N(1 - x1 -

σT
2(P)

N ) (8)

R + â ) θPT (9)
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the hypersphere isxN) allow us to establish the following
general expression for the least distortive pathway between
polyhedra P and T

which, taking into account eq 6, can be expressed in terms of
shape measures, resulting in the following analytical expression
for the minimum distortion path:

It must be noted that there is a simple relationship between
the shape constantkPT defined earlier (eq 2)17 and the minimum
distortion angleθPT:

It is now straightforward to generate the shape constants (eq
2) and minimum distortion angles (eq 12) for a variety of
polyhedral rearrangements. In Table 1, we present the corre-
sponding shape constantskPT (upper entries of each table) and
minimum distortion anglesθPT (lower entries of each table) for
polyhedra having between four and eight vertexes and a central
atom. For those cases in which the central atom is at the
geometric center of the polyhedron, these constants apply also
to polyhedra without a central atom. It might be useful in some
instances to analyze the interconversion between, e.g., a cyclic
and a chain structure, and we have therefore included in Table
2 the constants related to the interconversion of equally spaced
linear chains and the two- (polygonal) and tridimensional
(polyhedral) structures with the same number of atoms.

For some high-symmetry polyhedra,θPT can be determined
analytically from geometric parameters, as for the interconver-
sion of the square and the tetrahedron. Such geometrical
relationships also explain why the same value of the symmetry
constant (kPT ) 5.7735) appears for the tetrahedron-square and
octahedron-hexagon interconversion paths (Table 1). For the
interested reader, these aspects are discussed in Appendix 2.

We must recall at this point that in some cases a reference
polyhedron is uniquely determined by symmetry, but in other
cases there is some degree of arbitrariness. Among the
geometries considered here, the ones that are univocally defined
are the tetrahedron, the octahedron, the cube, all regular
polygons, and all prisms and antiprisms, since we consider the
latter as semiregular solids with all faces formed by regular
polygons. For the reference bipyramids, we impose only the
restriction that all vertexes are at the same distance from the
center, whereas, for the pyramids, we further impose the central
atom to be in the center of the base. For those polyhedra that
can be derived from the octahedron by removal of one or two
vertexes (the five vertex square pyramid ofC4V symmetry and
the four vertex sawhorse structure ofC2V symmetry), we have
retained the right angles of the octahedron. However, for some
purposes it will be useful to consider as a reference square
pyramid one with axial-equatorial angles of 105°, correspond-
ing to the midpoint of the Berry pseudorotation pathway2. The
choice of a reference polyhedron for a few other cases has more
degrees of freedom (the capped trigonal prism, the capped

octahedron and the trigonal dodecahedron), and their definition
as well as the justification for their choice are discussed in our
work devoted to penta-,22 hexa-,17 hepta-,18 and octacoordina-
tion.23

Table 1. Minimum Distortion Constants kPT (Upper Entries) and
Angles θPT (Lower Entries, in Degrees) for Several Combinations
of Polyhedra with V Vertexes (IUPAC-Recommended
Nomenclature for Polyhedra Is Used When Available) and a
Central Atoma

V ) 4 T-4 SW-4 SP-4

T-4 3.129 5.774
SW-4 18.234 4.365
SP-4 35.264 25.878

V ) 5 VOC-5 SPY-5 TBPY-5 PP-5

VOC-5 1.319 2.710 5.677
SPY-5 7.582 2.320 5.770
TBPY-5 15.722 13.417 6.088
PP-5 34.588 35.243 37.506

V ) 6 OC-6 TPR-6 PPY-6 HP-6

OC-6 4.091 5.517 5.774
TPR-6 24.149 4.125 5.803
PPY-6 33.484 24.362 5.352
HP-6 35.264 35.472 32.359

V ) 7 OCF-7 TPRS-7 PBPY-7 HPY-7 HP-7

OCF-7 1.236 2.899 4.130 6.146
TPRS-7 7.099 2.577 4.467 5.989
PBPY-7 16.852 14.934 5.166 5.934
HPY-7 24.393 26.530 31.105 5.047
HP-7 37.924 36.794 36.399 30.309

V ) 8 CU-8 DD-8 SAPR-8 HBPY-8 HPY-8 OP-8

CU-8 2.820 3.315 2.897 5.533 6.190
DD-8 16.379 1.688 3.960 4.979 5.669
SAPR-8 19.360 9.716 4.296 4.953 5.111
HBPY-8 16.842 23.326 25.444 4.865 5.694
HPY-8 33.592 29.863 29.691 29.109 4.776
OP-8 38.240 34.533 30.736 34.708 28.528

a T-4 ) tetrahedron, SW-4) sawhorse, SP-4) square planar. PP-5)
planar regular pentagon, VOC-5) vacant octahedron (square pyramid with
90° angles), SPY-5) square pyramid (105° angles), TBPY-5) trigonal
bipyramid. OC-6 ) octahedron, TPR-6) trigonal prism, PPY-6)
pentagonal pyramid, HP-6) planar regular hexagon. OCF-7) capped
octahedron, TPRS-7) capped trigonal prism, PBPY-7) pentagonal
bipyramid; HPY-7) hexagonal pyramid; HP-7) regular heptagon. CU-8
) cube; DD-8) triangular dodecahedron; SAPR-8) square antiprism;
HBPY-8 ) hexagonal bipyramid; HPY-8) heptagonal pyramid; OP-8)
regular octagon.

Table 2. Minimum Distortion Constants kPT between a Linear
Chain and Two- or Three-Dimensional Arrangements of N Atoms

N k(N-gon) polyhedron abbreviation k(polyhedron)

4 7.071 tetrahedron T-4 8.165
sawhorse SW-4 6.761

5 7.100 vacant octahedron VOC-5 7.638
trigonal bipyramid TBPY-5 7.874
Berry square pyramid SPY-5 7.906

6 7.105 octahedron OC-6 8.165
trigonal prism TPR-6 7.772
pentagonal pyramid PPY-6 7.608

7 7.110 capped octahedron OCF-7 8.137
capped trigonal prism TPRS-7 8.141
pentagonal bipyramid PBPY-7 8.052
hexagonal pyramid HPY-7 7.500

8 7.113 cube CU-8 8.165
dodecahedron DD-8 7.908
square antiprism SAPR-8 7.968
hexagonal bipyramid HBPY-8 7.924
heptagonal pyramid HPY-8 7.487

arcsin
σX(T)

xN
+ arcsin

σX(P)

xN
) θPT (10)

arcsin
xSX(P)

10
+ arcsin

xSX(T)

10
) θPT (11)

kPT ) xSP(T) ) xST(P) ) 10sinθPT (12)
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Spread, Berry, and Bailar Pathways: Molecular Models
and Experimental Data

In this section, we wish to look at the geometrical models
for three of the most frequently used polytopal rearrangement
mechanisms, defined in terms of angular distortions, and see if
they actually correspond to minimum distortion paths as defined
in eq 11. In addition, we wish to show the similar behavior of
those paths and, most importantly, to check whether they
represent correctly the experimental structures of various
families of compounds. These are the spread pathway (1) for
the interconversion of the tetrahedron and the square, the Berry
pseudorotation (2) that takes the trigonal bipyramid to a square
pyramid and viceversa, and the Bailar twist (3) for the
interconversion of the octahedron and the trigonal prism. For
each of these paths, we have obtained the shape measures
corresponding to the least distortive paths by applying eq 11
with the minimum distortion angles of Table 1 and plotted them
in Figure 3 (continuous lines) innormalized shape maps, in
which the shape measures are divided bykPT

2. In such
normalized maps, the two ideal polyhedra correspond to the
(1, 0) and (0, 1) points connected through the same path,
regardless of the number of vertexes and shape distance between
the two reference polyhedra. We also show in Figure 3 the
values obtained from molecular models of these rearrangements
used in our previous works (circles). There it can be seen that
there is a perfect match between the analytical minimum
distortion paths and those obtained from molecular models.
Least-squares fitting of the molecular model data to an expres-
sion of the type shown in eq 11 gives values ofθPT of 35.264-
(3)°, 13.407°, and 24.19(4)° for the spread, Berry, and Bailar
paths, to be compared with the analytical values of 35.264°,
13.417°, and 24.149°, respectively.

Having analytical expressions for minimum distortion paths
in terms of shape measures is useful for the stereochemical
analysis of families of compounds. However, it would be even
more interesting if we could obtain molecular structures (i.e.,
atomic coordinates) along those paths. In the CShM procedure,
once we have found the ideal polyhedron P that is closest to
polyhedron Q, each atom of P is associated to its closest atom
in Q, so that we can find the displacement vectorsqbi - pbi (eq
5). The minimum distortion path corresponds precisely to those
vectors, and we can obtain the atomic coordinates for as many
steps along the interconversion path as we wish by scaling the
vectors by a factor between 0 and 1. As examples, we show in
Figure 4 several structures obtained in such a way that represent
snapshots along the paths between the cube and the hexagonal
bipyramid and between the square and the tetrahedron.

To illustrate the chemical relevance of the minimum distortion
paths described by eq 11, as well as its applicability to any
polyhedral rearrangement, we present in Figure 5 the three
pathways analyzed here (spread for tetracoordinate, Berry for
pentacoordinate, and Bailar for hexacoordinate complexes) in
normalized shape maps. Together with the minimum distortion
path, we show in Figure 5 the shape measures for the first
coordination sphere of several families of coordination com-
pounds, which appear nicely distributed along the interconver-
sion pathways, thus suggesting that minimum distortion and low

energy paths proposed by the structure correlation principle24-26

(“...if a correlation can be found between two or more
independent parameters describing the structure of a given
fragment in a variety of environments, then the correlation
function maps a minimum energy path in the corresponding
parameter space”) are coincident. Furthermore, in Figure 5a we
have included the shape measures of both the coordination
spheres of d9 complexes and the supramolecular architectures
having four Cu atoms, to show how the spread pathway allows
us to describe structures of polyhedra so diverse in size and
molecular structure, using the minimum distortion path as a
unifying feature.

(22) Alvarez, S.; Llunell, M.J. Chem. Soc., Dalton Trans.2000, 3288.
(23) Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. To be submitted.

(24) Bürgi, H.-B. In PerspectiVes in Coordination Chemistry; Williams, A. F.,
Floriani, C., Meerbach, A. E., Eds.; Verlag Helvetica Chimica Acta: Basel,
1992.

(25) Bürgi, H.-B. Acta Crystallogr.1998, A54, 873.
(26) Murray-Rust, P.; Bu¨rgi, H.-B.; Dunitz, J. D.J. Am. Chem. Soc.1975, 97,

921.

Figure 3. Normalized shape maps showing the analytical minimum
distortion paths (eq 11, continuous lines) and paths calculated with molecular
models (circles) for (a) the spread interconversion1 of tetrahedron and
square, (b) the Berry pseudorotation2 for interconversion of the trigonal
bipyramid and the square pyramid, and (c) the Bailar interconversion3 of
trigonal prism and octahedron.
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Evaluation of the Deviation of a Structure from a Path

In some instances, we may be interested in knowing not only
how far a structure is from a reference polyhedron P but also
how close it is from the rearrangement path to another

polyhedron T. For this purpose, we consider a minimum
distortion path given by eq 11 and define a deviation function
∆(P,T) (eq 13). By definition of the minimum distortion path,
the deviation function must always be zero (for structures that
fall along the interconversion path) or positive. The inclusion
of θPT in the denominator puts the deviation functions for all
pairs of polyhedra in the same scale

As examples of application of the deviation function, we have
calculated such a parameter for the families of compounds
analyzed above (Figure 5) with respect to the spread, Berry and
Bailar interconversion pathways, respectively (1-3). The results,
presented as a histogram in Figure 6 (top), clearly show that
most of the tetra- and hexacoordinate structures are concentrated
along the spread and Bailar paths, respectively, while the studied
pentacoordinate complexes do not represent so well the Berry
pseudorotation. For the case of the Bailar trigonal twist, we

Figure 4. Snapshots along the minimum distortion paths between the cube and the hexagonal pyramid (top) and between the square and the tetrahedron
(bottom), obtained from the calculation of the shape measures.

Figure 5. Analytical minimum distortion paths (eq 11) in normalized shape
maps for three polytopal rearrangements, together with experimental data:
(a) spread pathway and data for tetracoordinate complexes of d9 metal ions15

(black triangles) and tetranuclear Cu compounds (white circles), (b) Berry
pathway for homoleptic pentacoordinate complexes,20 and (c) Bailar pathway
for hexakis(alkyl), hexakis(thiolato), tris(bidentate), and encapsulated hexa-
coordinate complexes.17,28

Figure 6. Distribution of the deviations (eq 13) from the spread, Berry,
and Bailar interconversion paths (top) of the structures described in Figure
4, compared to that of the normalized shape measures of the hexacoordinate
complexes relative to the octahedron and the trigonal prism (bottom).

∆(P,T) ≡ 1
θPT

[arcsin
xSX(P)

10
+ arcsin

xSX(T)

10 ] - 1 (13)
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present also the deviations from the ideal polyhedra, the
octahedron, and the trigonal prism (Figure 6, bottom). Com-
parison of the two histograms clearly shows that a large number
of molecules cannot be adequately described as either an
octahedron or a trigonal prism, whereas all of them fall along
the Bailar path within a good approximation.

Conclusions

According to the CShM approach, the geometries of two size-
normalized isomeric shapes (P and T), fully determine the
minimum distortion pathway for their interconversion. The only
parameter needed is the minimum distortion angleθPT (or,
alternatively, the related minimum distortion constantkPT),
which is obtained by calculating the continuous shape measure
of one shape relative to the other. Those parameters are reported
here for the different pairs of polyhedra with four to eight
vertexes.

A general expression has been derived that describes the
minimum distortion path for the interconversion of any pair of
polyhedra with the same number of vertexes. Such an expression
is fully coincident with the paradigmatic pathways in coordina-
tion chemistry: the spread path for tetracoordination, the Berry
pseudorotation for pentacoordinate, and the Bailar twist for
hexacoordinate complexes. However, even in those cases in
which a simple geometrical path for the interconversion of two
polyhedra is not available, the general expression given here
allows one to fully describe the minimum distortion path in
terms of shape measures and to generate molecular models along
the path. The use of normalized shape maps allows us to
compare in the same scale the different interconversion path-
ways, describing a universal behavior that applies to polyhedra
with different numbers of vertexes, and representing equally
well, e.g., the structures of the coordination spheres of transition
metal complexes and the spatial arrangement of metal atoms in
polynuclear supramolecular architectures.

In addition to the assignment of a particular ideal polyhedron
to a given molecular structure, which is so often problematic,
we propose that the deviation from an appropriate minimum
distortion path offers a useful stereochemical description. This
has been shown to be of use for several families of transition
metal compounds, such as the tetracoordinate d9 complexes.
Among more than 2000 structures of such compounds, 80%
can be classified as square planar, 7%, as tetrahedral, and the
remaining 13% that are severely distorted can be unequivocally
classified as being along the spread interconversion pathway
according to the corresponding path deviation function.15
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Appendix 1: The Sum Rule as an Approximation

Some pathways studied so far in terms of shape measures
were earlier fitted to either an exponential27,28 or a square root
sum (eq 14), with the latter giving a better agreement with
molecular models and experimental structures.16-18

We had already noticed that for geometries approximately
midway between the two extreme polyhedra along the path,
shape measures predicted by eq 14 are always slightly smaller
than experimental structures or molecular models. Although a
least-squares fitting of a model pathway to a square root sum
can be obtained, the resulting expression does not correctly
reproduce the points of intersection of the two axes (kPT )

xSP(T) ) xSP(T)). Let us then see under which circumstances
the sum rule used previously for interconversion pathways (eq
14) is a valid approximation.

If θPT is small, bothR andâ are perforce small and eq 9 can
be approximately expressed as,

and from eqs 8 and 13, we obtain

as empirically found in previous work from molecular models
and experimental data.17,18In short, the sum rule of eq 16 should
be expected to be a good approximation to the minimum
distortion pathway for those pairs of polyhedra characterized
by small minimum distortion anglesθPT. It can also be seen
from eq 15 that the sum rule is a good approximation when
eitherR or â is small (i.e., for small distortions from either of
the ideal polyhedra).

The agreement between the shape measures calculated from
the sum rule (eq 14) and those from the analytical path defined
in the shape hypersphere (eq 11) can be evaluated by means of

(27) Keinan, S.; Avnir, D.Inorg. Chem.2001, 40, 318.
(28) Alvarez, S.; Pinsky, M.; Llunell, M.; Avnir, D.Cryst. Eng.2001, 4, 179.xSX(P) + xSX(T) ) kPT (14)

Figure 7. Relative deviation (eq 13) of the sum rule (eq 16) for several
polytopal rearrangement paths, relative to the minimum distortion paths
(eq 11): spread pathway between tetrahedron and square (top), conventional
capped octahedron and conventional capped trigonal prism (bottom, black
circles), and triangular dodecahedron and square antiprism.

sin θPT ≈ sin R + sin â (15)

xSX(P) + xSX(T) ≈ kPT (16)
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the deviation function defined above (eq 13). We show in Figure
7 the deviation function for three pairs of polyhedra P and T.
For the tetrahedron/square pair, characterized by a large angle
(θPT ) 35.26°), deviations of up to 0.05 are obtained by using
the sum rule for intermediate structures. In contrast, the capped
octahedron/capped trigonal prism and triangular dodecahedron/
square antiprism pairs of polyhedra, with seven and eight
vertexes, respectively, characterized by small values ofθPT (see
Table 1), give rather small deviation functions throughout the
pathways (less than 0.004). These results confirm that the
deviations of the sum rule from the analytical expression are
much smaller for a path characterized by a smaller minimum
distortion angle.

Appendix 2: Geometrical Interconversion Paths

The shape measures for the spread interconversion pathway
between the tetrahedron and the square (1) can be defined
analytically in terms of geometrical parameters through a rather
simple expression. Consider, e.g., the tetrahedron and the square
superimposed in such a way that the improper S4 axis of the
former is coincident with the C4 axis of the latter, as schemati-
cally depicted in7, where the square is represented in a side
view (thick line) and the closest tetrahedron is superimposed
(black continuous lines). The perfect tetrahedron is defined by

æ ) arcsin[1/x3]. Any structure X along the spread pathway
that retains theD2d symmetry can be defined by the deviation
of the four ligands from thexy plane by an angleR (positive
values for two ligands, negative for the other two;R ) æ for
the tetrahedron,R ) 0° for the square). Prior to scaling, the
distances of all vertexes to the center are assumed to be
normalized in the sense of eq 3. Since the shape measure of
structure X is given by the sum of the squares of the distances
of its vertexes to those of the reference structure (D4h or Td),
scaled to minimize that distance, OPX and OTX angles must
be right angles. Therefore, for each ligand,

and the shape measures can be expressed as

Since, by definition of the spread pathway,R + â ) æ, it
follows that

Comparison with eq 11 indicates that the spread distortion is a
minimum distortive pathway between the tetrahedron and the
square and that the minimum distortion angle is in this caseæ,
as found by computation (Table 1).

The pathway for the planarization of an octahedron to a
hexagon can be described in analogous terms, aligning the S6

and C6 axes of the two reference figures. In this case, the angle
between each M-L bond in the hexagonal structure and the
closest M-L bond in the octahedral structure is againæ, and
the path is defined in terms of the shape measures relative to
the octahedron (Oh) and the hexagon (D6h) by the general
expression of eq 11 in which the minimum distortion angle is
againæ.

Thus, the analytical expressions for these two interconversion
paths provide a geometrical meaning for the corresponding
minimum distortion angles and explain why they adopt the same
value in the tetrahedron-square and octahedron-hexagon cases
(Table 1). An important conclusion is that only for those
polyhedral rearrangements in which the vertexes of the two
shapes can be related by means of a single angular parameter
is there a clear correspondence between that parameter and the
minimum distortion angleθPT of the corresponding 3N-
dimensional shape hypersphere.

JA036479N

σX(D4h) ) xNsin R (17)

σX(Td) ) xNsin â (18)

SX(D4h) ) 100 sin2 R (19)

SX(Td) ) 100 sin2 â (20)

arcsin
xSX(D4h)

10
+ arcsin

xSX(Td)

10
) æ (21)

arcsin
xSX(Oh)

10
+ arcsin

xSX(D6h)

10
) æ (22)
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