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Abstract: A definition of minimum distortion paths between two polyhedra in terms of continuous shape
measures (CShM) is presented. A general analytical expression deduced for such pathways makes use of
one parameter, the minimum distortion constant, that can be easily obtained through the CShM methodology
and is herein tabulated for pairs of polyhedra having four to eight vertexes. The work presented here also
allows us to obtain representative model molecular structures along the interconversion pathways. Several
commonly used polytopal rearrangement pathways are shown to be in fact minimum distortion pathways:
the spread path leading from the tetrahedron to the square, the Berry pseudorotation that interconverts a
square pyramid and a trigonal bipyramid, and the Bailar twist for the interconversion of the octahedron and
the trigonal prism. Examples of applications to the analysis of the stereochemistries of several families of
metal complexes are presented.

The regular Platonic polyhedra, semiregular Archimedean variety of polyhedrd; 13 from boranes to purely organic
polyhedra, and the planar regular polygons are fascinating molecules, fullerenes, coordination complexes, metal clusters,
geometrical objects* that have captivated the attention of or supramolecular arrangements. Yet many molecules show in
mankind from prehistoric times® Polyhedral models found in  solution a dynamic behavior, undergoing a fast interconversion
Scotland have been dated in 2000 B.C.; in ancient Greece,between two polyhedral structures (polytopal rearrangement)
Archimedes, Plato, Euclid, and others studied in detail the atroom temperature, while many others exhibit in the solid state
polyhedra; during the Renaissance, artists and polymaths suctstructures that are intermediate between two of the highly
as Direr, Pacioli (with drawings from Leonardo), and Kepler symmetric polyhedral shapes. A key question then is can we
made extensive use of polyhedra, and their study was spread tglefine a general polytopal rearrangement pathway between two
China and Japan in the early XVIith century. In Chemistry, these Symmetric geometries that occurs with the minimal loss of shape
geometrical entities provide a simple and powerful way to Of Symmetry?
represent the spatial arrangement of groups of gtoms as, €.9-ghape and Symmetry Measures
those directly bonded to a central atom, starting from the
introduction of the tetrahedron by Van'Hoff and Le Bel to 10 decide whether the loss of shape or symmetry is
describe the stereochemistry of organic molecules and of theMinimized along a rearrangement path, we need to consider
octahedron by Werner to explain the enantiomerism of metal theém as continuous properties, in such a way that the loss of
coordination compounds. We can find nowadays examples of Shape or symmetry can be quantitatively evaluated. The

different kinds of molecules whose structures correspond to a continuous symmetry and shape measures (CSM or CShM,
respectively) proposed by one of 14> comply with this

requirement, providing us with quantitative estimates of the
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predetermined structure, such as an ideal polyhedron. It seems
therefore adequate to try to describe the interconversion path
between two ideal polyhedra in terms of the corresponding shape
or symmetry measures.

At this point, it is important to clarify the subtle difference
between symmetry and shape measures when we evaluate
distortions from a polyhedron. Strictly speaking, a symmetry
measure (CSM) calibrates how far a structure is (see below for
a more detailed explanation) from a geometry that posseses the
symmetry operations of a certain symmetry group, whereas a o 10 20 30l 40
shape measure (CShM) tells thistanceto a specific shape. It 2
must be noted, though, that when the reference shape is a regular
polyhedron (tetrahedron, octahedron, cube, !Cosahedro.n’ OrFigure 1. Positions of the structures of tetracoordinate transition metal
dodecahedron), shape and symmetry are equivalent. This Caltomplexes in a shape map. The arrow indicates the path from the perfect
be exemplified by the cube, since all cubes are identical excepttetrahedron (shape measures 0 and 33.3) to the perfect square (shape
for differences in size and orientation in space, all cubes have measures 33.3 and 0).
the O, symmetry. When other polyhedra, such as bipyramids l

S(Ty)

or prisms, are considered, there are infinite shapes with the same
symmetry, and shape measures are different than symmetry
measures. As an example, consider the trigonal bipyramid. We
can build a variety of trigonal bipyramids by changing the ratio
between axial and equatorial distances to the center of the
bipyramid, all of them having the same symmetis).
However, each of these bipyramids has a different shape, since

2
kpt

—>

Sx(P)

they cannot be superimposed by the combined effect of a ks
translation, a rotation, and an isotropic expansion or contraction. P
In summary, shape is a more restrictive criterion than symmetry,

and we will use from here on shape measures rather than Sy —>»

symmetry measures, even if in some cases the two may beFigure 2. Generalized interconversion pathway between two polyhedra P
equivalent. and T in the shape map referred to their ideal structures P and T.

The calculation of the continuous shape measure of the
coordination sphere of a given atom, AB (referred from here measures, we can represent in a scatterplot, &¢a4n) as a
on as polyhedron Q), relative to an ideal polyhedron P requires function of So(Tq) for molecular models, experimentally deter-
the knowledge of th&l vectorsg; containing the Bl Cartesian mined structures or theoretically optimized ones. We call such
coordinatesy, as well as the corresponding vectors containing scatterplotsshape(or symmetry)mapsand have shown that
the coordinategy of the ideal polyhedron. The ideal shape is they provide a highly useful means of identifying structural
then rotated, translated, and scaled in such a way as to minimizetrends in tetralf hexa-17 or heptacoordinaté transition metal
the distance function in eq 1 (more details on the minimization compounds. A shape map for tetracoordinate transition metal
procedure are given below), which then givesghape measure  compound® including more than 13 000 structural data is
of the investigated structure Q relative to the ideal shape P, shown in Figure 1 as an example. There, the perfect tetrahedron
S(P). In eq 1,qo is the position vector of the geometric center corresponds to the (0, 33.33) point and the perfect square to
of Q. the (33.33, 0) point. Distortions from the tetrahedron toward
the square seem to have a lower limit that corresponds to an
increase in square symmetry (i.e., a decreasesj(Dan))
accompanied with the minimal possible distortion of the
tetrahedron (minimal value d(Tq)).

Typical pathways for the interconversion of two ideal
polyhedra P and T, such as the spread distortion from tetrahedral
to square moleculed), the Berry psedurotation of pentacoor-
By considering several alternative geometries wWith- 1 dinate complexe<2j, or the Bailar twist between the octahedron

vertexes, the coordination sphere Q can then be characterizednd the trigonal prisn), have been seen to appear in the shape
by its shape measures relative to a variety of reference polyhedrdaps as curves of the type shown in Figure 2, representing a
with the same number of vertexes. As an example, for a lower limit for the shape measures of e>_<per|mental gtructures.
tetracoordinated atom, we can use the valu&0f), So(Dar), In general, we consider the pgth for the interconversion of two
andSo(sawhorse), relative to the tetrahedron, square planar, and2"Pitrary polyhedra P and T with the same number of vertexes,
sawhorse geometries, respectively. Focusing on only two Shapéoroceedlng through a series of intermediate structures X that

] |
N

16, — B
£

Sy(P) = min|————| x 100 (1)
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are characterized by their shape meas@&€B) andS(T). We with molecular models for the three most characteristic paths
then define theminimum distortion pattbetween P and T as  (1—3). Furthermore, we will show that the determination of the
the one that has the minimum valueS${T) for a given value shape measure of a polyhedron relative to another one provides
of Sx(P) within the interval 0< Sx(P) < Sy(P). a simple and efficient means of building molecular structures
along their interconversion path. In the same spirit with which
the shape measures provide information on the distance of a
N given structure to a reference shape, we will then define a
= = 1 deviation function relative to a given pathway that measures
how close a structure is from a given pathway, regardless of
the distance to the two extreme shapes. Finally, applications to
the analysis of experimental structural data of the deviation
functions will be shown. In addition, we provide as appendices
. two additional interesting aspects of the minimal distortion
105""_/ pathways: in Appendix 1, we will show under which circum-
"’ .\\‘L
L— o

Dyq4 spread pathway

stances a sum rule used eafierepresents a reasonable
approximation to the analytical expression deduced, whereas,

il

il N

— 2
. v in Appendix 2, we will discuss two cases in which the minimal
< L distortion angle in the shape hypersphere can be associated to
L bond angles in the interconverted structures.

C,, Berry pseudorotation
Calculation of Continuous Shape Measures

—— To deduce the minimum distortion paths for polytopal
rearrangements in terms of continuous shape measures it is
= 3 convenient first to briefly recall the procedure used to calculate
shape measures, while a more detailed description of the
algorithms can be found in the literatt#®The goal of the
D Bailar twist computational procedure is to obtain the coordinggesf an
ideal polyhedron Pthat is closest to a particular distorted
The curves representing minimum distortion paths in shape polyhedron Q with vertexes at the positions defined bydhe
maps have the following properties, regardless of the numberyectors, in order to calculate the shape measures from eq 1.
of vertexes of the polyhedra under study: (i) The shape gych a process requires transformation of the ideal polyhedron
measures of two structures relative to each other are identicalpo g 3 related polyhedron P with the same shape but whose
and can be related to a constaaf associated to those two  sjze and orientation in space are adjusted in such a way as to
specific shapes (eq 2). (ii) The (0, 0) point is by definition minimize its distance (in the sense of eq 1) to the distorted
unreachable, since it would correspond to a structure that haSponhedron.
at the same time two different shapes, e.g., both perfect the gigorithm for calculating the CShM's consists of the
tetrahedral and square planar. (iii) There is only one allowed following steps:
point at each coordinate axis, because the distance from a perfect (1) Both the original polyhedron and the reference one are

polyheqron (|.e.,.a zero value for one shape measure) to Fhe laced with their geometric centers at the origin of coordinates
alternative one (i.e., the second shape measure) has a un|qu§_e_, the coordinates of the origin in eq 1 @je= 0).1° Their

value. These common features of such different paths as those, jantation and vertex labeling are either arbitrary or selected
shown in1—3 will allow us in a later section to put them in the for convenience of computation (but see below). It can be
salmﬁ j‘c"’;le' thus offering ‘1 quite general description  of demonstrated that once the problem and reference molecules
polyhedral rearrangement pathways. have been placed at the origin, no further translation is required

B B to minimize the distances between their verteX®es.
ket = v/SH(T) = v/SH(P) ) (2) Since the shape measures should be independent of size,
we size-normalize the two object8 Bnd Q as follows:

In what follows, we will first review briefly the procedure
used to obtain the shape measures defined in eq 1, since the 3N aN
meaning and nomenclature of the different parameters used will qu2 = Z(pck))Z =N (3)
be needed for the subsequent sections. We will then show that & &
all polyhedra withN — 1 vertexes and the same size can be

described as points on the surface of a hypersphere of fixed (3) The reference polyhedron undergoes a rigid rotation to
radius. The path between two polyhedra can therefore beminimize the distances between its vertexes and those of the
described making use of a section of that hypersphere, and &nvestigated molecule, giving a new set of coordingtes R
Simple formula can be deduced that expresses the minimumﬁio, whereR is a (3 X 3) unitary transformation matrix that
distortion pathway in terms of a constant that is characteristic minimizes the distances between the two shapate that P

of the pair of polyhedra considered (tin@nimum distortion is also normalized as in eq 3.

angleor the relateaminimum distortion constaptThe analytical
expression deduced will be shown to be in excellent agreement(19) Pinsky, M.; Avnir, D.Inorg. Chem.1998 37, 5575.
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(4) At this point, we can define a distance function square, with coordinategy) can be viewed as a point on a
n hypersphere of radius/N in 3N-dimensional space. Other
& = G — ,k)z ) size-normalized figures with the same shape are related to P
kZl %P through rigid rotations and correspond to other points on the
hypersphere. If we search for the figure with another ideal shape
(5) An isotropic scaling factorAgp, is applied to thep'x (e.g., a tetrahedron) that is closest tarPthe CShM sense, let
coordinates of the reference polyhedrgm, = Agpp'k, that us say T, it will occupy another point on the surface of the
minimizes the new distance function hypersphere, with coordinateg. By definition of the CShM,
all other structures with the same shape, related by Totation,
N 5 are farther away from'Rhan T. Therefore, the shortest path
o= Z(Qk —PJ ©) between these two figures,’ Tand P, composed of all
k= intermediate size-normalized figures X (s@ecorresponds to
the circular section of our hypersphere.
Let us first consider the two extreme shapésifid T only
'(5). The distance between these two size-normalized structures,
dr(P), is thus the base of an isosceles triangle with an afigle
Since the scaling factor applied t6 iR order to minimize the
distance between polyhedra P andAgy, is isotropic, when
applied to all thep'k coordinates, it takes us radially to point P

(6) The process is repeated for all possible pairings between
the vertexes of the reference and the distorted polyhedron (i.e.
the B atoms in an ARB-; molecule), and the one that gives the
minimal distance functiond ando provides us with the closest
ideal polyhedron P to our problem polyhedron Q. Such a
minimal distancegq(P), gives the shape measure of Q relative
to P, S(P), through eq 6, where the denominator results from :
eq 1 when the normalization condition (eq 3) is taken into @nd the OPTangle must be 90in order to makeor(P)
account. The shape measSigP) is adimensional and can adopt minimum. Several important conclusions arise: (a) The separa-

values between 0 and 100, in contrast wig{P) that has units tion between structures’ Bnd P in the hypersphere is given
of distance and can vary between 0 aritd by a constant anglépr independently of whether the scaling
' factor has been introduced or not, and we will refer to it as the

OZ(P) minimum distortion angléor the interconversion of polyhedra
SQ(P) =-2"100 (6) P and T. (b) The scaling factéer must always be less than or
N equal to one. (c) Since sifi7) ando are related by eq 7 and

For the calculation of the shape measures reported in this?7(P) = VN, the angle? must be in the range & sin(pr) <
paper, we have used the program SHAREat can be obtained 1, and we need only consider in what follows angles between

from the authors upon request. 0 and 90. (d) From5, it can be deduced that the scaled and
unscaled minimum distances are related by the simple expression
Shape Hypersphere and Minimum Distortion Pathway in eq 8.

Before dealing with the minimum distortion pathway between
two polyhedra, we need to establish the framework in which it o7(P)

will be defined. By comparing eq 3 with the equation of a sphere SinOpr = JN @
(X® + y? + 22 =r?), one realizes that a figure fe.g., a regular
oA(P

X d3(P) = 2N(1 —A/1- T,El ) )

T
If we wish to derive the analytical expression of the
interconversion pathway in terms of shape measures, we need
VN only to find a general expression for the position of the general

point X in terms of the distance functiong(T) andox(P). Since

the scaling factor that is applied to the reference polyhedra when
calculating the shape measure of each point X along the path is
different, it is much simpler to use the angtesndg to define

the position of X relative to P and T, and these must obey eq
9. The different distances involvedy(P), dx(T), dw(P), dr(T),

and the corresponding scaled distanegss well as the shape
measuresSr(P), S(T), Sx(P), and S(T), are fully determined

by the anglesy, 8, and 6pr.

a+pf=0p ()]

The trigonometric relationships betweeg(P) and a and
betweenoy(T) andj deduced fron6 (remember the radius of

(20) Arun, K. S.; Huang, T. S.; Blostein, S. [EE Trans. Pattern Anal. Machine
Intel. 1987, PAMI-9, 698.

(21) Llunell, M.; Casanova, D.; Cirera, J.; Bofill, J. M.; Alemany, P.; Alvarez,

6 S.; Pinsky, M.; Avnir, D.SHAPE(1.1); Barcelona, 2003.
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the hypersphere is/N) allow us to establish the following Zabfle 1-9 Méfcimumgift_mtiqn gonstant)sfkprs (Uppelrgntrigs) ?nd
. . . ngles Opr (LOWer entries, In Degrees) 1or several Combinations
general expression for the least distortive pathway between uf pojyhedra with \ Vertexes (IUPAC-Recommended
polyhedra P and T Nomenclature for Polyhedra Is Used When Available) and a
Central Atom?@

_oy(T) _ox(P) V=4 T-4 SW-4 SP-4
arcsin + arcsin =0pr (20)
JN VN T-4 3.129 5.774
SW-4 18.234 4.365
which, taking into account eq 6, can be expressed in terms of ~ SP-4 35.264 25.878
'fs,haﬁ)qe measures, C;_esulti_ng in thhe following analytical expression™ | . VOGS SPYS5 TBPYS PP
or the minimum distortion path: VOCS 1310 2710 e
SPY-5 7.582 2.320 5.770
AS(P) ST TBPY-5 15.722 13.417 6.088
aresin— o + arcsin 0 - Opr (11) PP-5 34.588 35.243 37.506
. . . . V= 0C-6 TPR-6 PPY-6 HP-6
It must be noted that there is a simple relationship between och 2001 T ——
the shgpe constakgr defined earlier (eq 2§ and the minimum TPR-6 24,149 : 1125 5803
distortion anglefer: PPY-6 33.484 24.362 5.352
HP-6 35.264 35.472 32.359
Ko = ySp(T) = y/Si(P) = 10sinpr (12) V=7 OCF-7 TPRS-7 PBPY-7 HPY-7 HP-7
It is now straightforward to generate the shape constants (eq $§£é77 099 1.236 22%35; i—i?é(; Z-g‘ég
2) and minimum distortion angles (eq 12) for a variety of PBPY-7 16.852 14.934 : 5166 5934
polyhedral rearrangements. In Table 1, we present the corre- ypy.7 24.393 26.530 31.105 5.047
sponding shape constarigsr (upper entries of each table) and ~ HP-7 37.924 36.794 36.399 30.309
minimum distortion angle8pt (lower entries of each table) for
. . V=28 CU-8 DD-8 SAPR-8 HBPY-8 HPY-8 OP-8
polyhedra having between four and eight vertexes and a central
atom. For those cases in which the central atom is at the CU:S 16.379 2.820 ?'gég g'ggg 2'333 g'égg
geometric center of the polyhedron, these constants apply also sapr-8 19360  9.716 4296 4953 5.111
to polyhedra without a central atom. It might be useful in some HBPY-8 16.842 23.326 25.444 4.865 5.694
instances to analyze the interconversion between, e.g., a cyclic HPY-8 ~ 33.592  29.863  29.691  29.109 4.776

38.240 34533 30.736 34.708  28.528

and a chain structure, and we have therefore included in Table_—__
2 the constants related to the interconversion of equally spaced aT.4 = tetrahedron, SW-4- sawhorse, SP-4 square planar. PP5
linear chains and the two- (polygonal) and tridimensional planar regular pentagon, VOG=5vacant octahedron (square pyramid with

: 90° angles), SPY-5= square pyramid (105angles), TBPY-5= trigonal
(polyhedral) structures with the same number of atoms. bipyramid. OC-6— octahedron, TPR-6= ftrigonal prism, PPY-6—

For some high-symmetry polyhedi@,r can be determined pentagonal pyramid, HP-6& planar regular hexagon. OCF< capped
analytically from geometric parameters, as for the interconver- g?tahedrgnhgi’gs-hﬁ Cappecli tflgongl glralsg, F’BIPYH'E Pentaggfbag
: : ipyramid; -7= hexagonal pyramid; HP-¥ regular heptagon. CU-
Slon_ of the square ar?d the tetrahedron. Such geometrical_ cube; DD-8= triangular dodecahedron; SAPR=8 square antiprism;
relationships also explain why the same value of the symmetry HBPY-8 = hexagonal bipyramid; HPY-& heptagonal pyramid; OP-8

constant ket = 5.7735) appears for the tetrahedron-square and regular octagon.
pctahedron-hexagon interconversion paths (Taple 1). For. the - op/e 2. Minimum Distortion Constants ker between a Linear
interested reader, these aspects are discussed in Appendix 2.Chain and Two- or Three-Dimensional Arrangements of N Atoms

We must recall at this point that in some cases a reference | y.gon)

. . . ) polyhedron abbreviation k(polyhedron)
polyhedron is _unlquely determined by s_ymr_netry, but in other 7071 tetrahedron T4 8.165
cases there is some degree of arbitrariness. Among the sawhorse SW-4 6.761
geometries considered here, the ones that are univocally defined 5 7.100 vacant octahedron VOC-5 7.638
are the tetrahedron, the octahedron, the cube, all regular trigonal bipyramid ~~ TBPY-5 7.874
| d all ori d antiori . ider th Berry square pyramid SPY-5 7.906
polygons, and all prisms and antiprisms, since we consider the ¢ 7105 octahedron 0C-6 8165
latter as semiregular solids with all faces formed by regular trigonal prism TPR-6 7.772
polygons. For the reference bipyramids, we impose only the pentagonal pyramid PPY-6 7.608
restriction that all vertexes are at the same distance from the 7~ 7110 capped octahedron OCF-7 8.137
. . capped trigonal prism TPRS-7 8.141
center, Whereas, for the pyramids, we further impose the central pentagonal bipyramid PBPY-7 8.052
atom to be in the center of the base. For those polyhedra that hexagonal pyramid HPY-7 7.500
can be derived from the octahedron by removal of one or two 8 7113 dcudbe hed ICDUD'% E;%)%Eé
- . odecahedron - .
vertexes (the five vertex square pyramid@f, symmetry and square antiprism SAPR-8 7968
the four vertex sawhorse structure ©f, symmetry), we have hexagonal bipyramid HBPY-8 7.924
retained the right angles of the octahedron. However, for some heptagonal pyramid HPY-8 7.487
purposes it will be useful to consider as a reference square
pyramid one with axiatequatorial angles of 105correspond- octahedron and the trigonal dodecahedron), and their definition
ing to the midpoint of the Berry pseudorotation pathv2ayhe as well as the justification for their choice are discussed in our

choice of a reference polyhedron for a few other cases has morework devoted to pent&2 hexa-1” hepta-t8 and octacoordina-
degrees of freedom (the capped trigonal prism, the cappedtion.23
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Spread, Berry, and Bailar Pathways: Molecular Models

and Experimental Data 1

(a) Spread
In this section, we wish to look at the geometrical models
for three of the most frequently used polytopal rearrangement
mechanisms, defined in terms of angular distortions, and see if
they actually correspond to minimum distortion paths as defined
in eq 11. In addition, we wish to show the similar behavior of
those paths and, most importantly, to check whether they
represent correctly the experimental structures of various 0.0

families of compounds. These are the spread pathdiajot

the interconversion of the tetrahedron and the square, the Berry Tetrahedron
pseudorotation?) that takes the trigonal bipyramid to a square
pyramid and viceversa, and the Bailar twis?) (for the
interconversion of the octahedron and the trigonal prism. For
each of these paths, we have obtained the shape measures
corresponding to the least distortive paths by applying eq 11
with the minimum distortion angles of Table 1 and plotted them

in Figure 3 (continuous lines) inormalized shape map

which the shape measures are divided kgt In such
normalized maps, the two ideal polyhedra correspond to the |
(2, 0) and (0, 1) points connected through the same path, . ———

regardless of the number of vertexes and shape distance between 0.0 0.5 1.0
the two reference polyhedra. We also show in Figure 3 the Trigonal Bipyramid
values obtained from molecular models of these rearrangements
used in our previous works (circles). There it can be seen that
there is a perfect match between the analytical minimum
distortion paths and those obtained from molecular models.
Least-squares fitting of the molecular model data to an expres-
sion of the type shown in eq 11 gives valuedigt of 35.264-

(3)°, 13.407, and 24.19(%4) for the spread, Berry, and Bailar
paths, to be compared with the analytical values of 35.264
13.417, and 24.149, respectively.

Having analytical expressions for minimum distortion paths 00 ] o
in terms of shape measures is useful for the stereochemical 0.0 0.5 10
analysis of families of compounds. However, it would be even Trigonal Prism
more interesting if we could obtain molecular structures (i.e.,
atomic coordinates) along those paths. In the CShM procedure,Figure 3. Normalized shape maps showing the analytical minimum

once we have found the ideal polyhedron P that is closest to distortion paths (eq 11, continuous lines) and paths calculated with molecular
models (circles) for (a) the spread interconversioof tetrahedron and

POlyhedron Q, each aFom of P _'S associated to its closest atomsquare, (b) the Berry pseudorotatigrfor interconversion of the trigonal
in Q, so that we can find the displacement vec@rs B (eq bipyramid and the square pyramid, and (c) the Bailar interconveBsiuin
5). The minimum distortion path corresponds precisely to those trigonal prism and octahedron.

vectors, and we can obtain the atomic coordinates for as many
steps along the interconversion path as we wish by scaling the
vectors by a factor between 0 and 1. As examples, we show in . .
Figure 4 several structures obtained in such a way that represen{ It a correlation can be fo_ur_1d between two or more
snapshots along the paths between the cube and the hexagon Idependgnt parameters des_crlbmg the structure of a given
bipyramid and between the square and the tetrahedron. ragment in a variety of environments, then the correlation

Toil he chemical rel  the mini di . function maps a minimum energy path in the corresponding
0 lllustrate the chemical relevance of the minimum distortion parameter space”) are coincident. Furthermore, in Figure 5a we

paths described by eq 11, as well as its applicability to any have included the shape measures of both the coordination

poI)r/]hedraI realtrrandg(ra]ment, we gr;esent n F'gollj_re o tge thr}?espheres of icomplexes and the supramolecular architectures
pathways gl_na yze deée_l(sp;eah or tetrag_oor Inate, | erry (_Jrhaving four Cu atoms, to show how the spread pathway allows
pentac|_00r dmﬁte’ an alTar orh exa_u;oohr mgtt_e comg_exes_) "Mus to describe structures of polyhedra so diverse in size and
normaiized shape maps. ogether with the minimum |stort|pn molecular structure, using the minimum distortion path as a
path, we show in Figure 5 the shape measures for the f|rstunifying feature

coordination sphere of several families of coordination com- '

ppunds, which appear nlcely dISt”bUt.eq along _the Ir_]terconver_ (24) Burgi, H.-B. In Perspecties in Coordination Chemistryilliams, A. F.,

sion pathways, thus suggesting that minimum distortion and low Floriani, C., Meerbach, A. E., Eds.; Verlag Helvetica Chimica Acta: Basel,

Square

0.5

T T T ¢

0.0 0.5 1.0

1049

(b) Berry

Square Pyramid (105°)

(c) Bailar

Octahedron

energy paths proposed by the structure correlation prirféigfe

1992.
(25) Burgi, H.-B. Acta Crystallogr.1998 A54, 873.
(22) Alvarez, S.; Llunell, MJ. Chem. Soc., Dalton Tran200Q 3288. (26) Murray-Rust, P.; Bgi, H.-B.; Dunitz, J. D.J. Am. Chem. Sod.975 97,
(23) Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. To be submitted. 921.
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Figure 4. Snapshots along the minimum distortion paths between the cube and the hexagonal pyramid (top) and between the square and the tetrahedron
(bottom), obtained from the calculation of the shape measures.
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Square Pyramid (105°) Figure 6. Distribution of the deviations (eq 13) from the spread, Berry,
and Bailar interconversion paths (top) of the structures described in Figure
4, compared to that of the normalized shape measures of the hexacoordinate
1.0 (c) Bailar complexes relative to the octahedron and the trigonal prism (bottom).
5 polyhedron T. For this purpose, we consider a minimum
&) distortion path given by eq 11 and define a deviation function
2 A(P,T) (eq 13). By definition of the minimum distortion path,
© . s .
+ the deviation function must always be zero (for structures that
o fall along the interconversion path) or positive. The inclusion
of Opt in the denominator puts the deviation functions for all
A pairs of polyhedra in the same scale
Trigonal Prism 1 .VS((P) . S((T)
. . . don: _ , A(P,T) = —|arcsir—— + arcsinr——| — 1  (13)
Figure 5. Analytical minimum distortion paths (eq 11) in normalized shape Op] 10 10
maps for three polytopal rearrangements, together with experimental data:
. Y
(a) spread pathway and data for tetracoordinate complexénaéel iond As examples of application of the deviation function, we have

(black triangles) and tetranuclear Cu compounds (white circles), (b) Berry -
pathway for homoleptic pentacoordinate compleX®es)d (c) Bailar pathway ~ calculated such a parameter for the families of compounds

for hexakis(alkyl), hexakis(thiolato), tris(bidentate), and encapsulated hexa- analyzed above (Figure 5) with respect to the spread, Berry and

coordinate complexed:*® Bailar interconversion pathways, respectively-8). The results,
Evaluati f the Deviati ¢ 2 Structure f Path presented as a histogram in Figure 6 (top), clearly show that
valuation ot the Deviation of a Sructure from a Fa most of the tetra- and hexacoordinate structures are concentrated

In some instances, we may be interested in knowing not only along the spread and Bailar paths, respectively, while the studied
how far a structure is from a reference polyhedron P but also pentacoordinate complexes do not represent so well the Berry
how close it is from the rearrangement path to another pseudorotation. For the case of the Bailar trigonal twist, we

J. AM. CHEM. SOC. = VOL. 126, NO. 6, 2004 1761



ARTICLES Casanova et al.

present also the deviations from the ideal polyhedra, the 0.06
octahedron, and the trigonal prism (Figure 6, bottom). Com- | Tetrahedron/square
parison of the two histograms clearly shows that a large number

of molecules cannot be adequately described as either an 0.04 1
octahedron or a trigonal prism, whereas all of them fall along
the Bailar path within a good approximation.

A(P,T)

Conclusions

According to the CShM approach, the geometries of two size-
normalized isomeric shapes (P and T), fully determine the 0.00 $——————————>-
minimum distortion pathway for their interconversion. The only 0 10 2 30 40
parameter needed is the minimum distortion ange (or, S(P)
alternatively, the related minimum distortion constaegt), 0.004
which is obtained by calculating the continuous shape measure
of one shape relative to the other. Those parameters are reported
here for the different pairs of polyhedra with four to eight
vertexes.

A general expression has been derived that describes the
minimum distortion path for the interconversion of any pair of
polyhedra with the same number of vertexes. Such an expression
is fully coincident with the paradigmatic pathways in coordina-
tion chemistry: the spread path for tetracoordination, the Berry 0.000
pseudorotation for pentacoordinate, and the Bailar twist for 0 1 s(p 2 3
hexacoordinate complexes. However, even in those cases in (P)

which a simple geometrical path for the interconversion of two F9ure 7. Relative deviation (eq 13) of the sum rule (eq 16) for several
polytopal rearrangement paths, relative to the minimum distortion paths

polyhedra is not ava”ab'_e, the gen.eral expr_essio_n given r?ere(eq 11): spread pathway between tetrahedron and square (top), conventional
allows one to fully describe the minimum distortion path in capped octahedron and conventional capped trigonal prism (bottom, black

terms of shape measures and to generate molecular models alongjrcles). and triangular dodecahedron and square antiprism.
the path. The use of normalized shape maps allows us to
compare in the same scale the different interconversion path-
ways, describing a universal behavior that applies to polyhedra
with different numbers of vertexes, and representing equally
well, e.g., the structures of the coordination spheres of transition
metal complexes and the spatial arrangement of metal atoms in : . .
polynuclear supramolecular architectures. can be obtalned,.the resfultlng expression does not correctly
In addition to the assignment of a particular ideal polyhedron reproduce the points of intersection of thg tWO, axess €
to a given molecular structure, which is so often problematic, ¥ p(T) = v/Ss(T)). Let us then see under which circumstances
we propose that the deviation from an appropriate minimum the sum rule used previously for interconversion pathways (eq
distortion path offers a useful stereochemical description. This 14) iS @ valid approximation.
has been shown to be of use for several families of transition T @eris small, botha andf are perforce small and eq 9 can
metal compounds, such as the tetracoordindteatnplexes. be approximately expressed as,
Among more than 2000 structures of such compounds, 80%
can be classified as square planar, 7%, as tetrahedral, and the
remaining 13% that are severely distorted can be unequivocally
classified as being along the spread interconversion pathway
according to the corresponding path deviation functfon.

0.002 DD/SAP

A(P,T)

cCO/cCTP

We had already noticed that for geometries approximately
midway between the two extreme polyhedra along the path,
shape measures predicted by eq 14 are always slightly smaller
than experimental structures or molecular models. Although a
least-squares fitting of a model pathway to a square root sum

sinfr~ sina + sinf (15)

and from eqs 8 and 13, we obtain

Sd(P) + VST = ker (16)
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from eq 15 that the sum rule is a good approximation when
eithera or 5 is small (i.e., for small distortions from either of
Some pathways studied so far in terms of shape measureshe ideal polyhedra).

Appendix 1: The Sum Rule as an Approximation

were earlier fitted to either an exponentia® or a square root The agreement between the shape measures calculated from
sum (eq 14), with the latter giving a better agreement with the sum rule (eq 14) and those from the analytical path defined
molecular models and experimental structufes® in the shape hypersphere (eq 11) can be evaluated by means of

_ 27) Keinan, S.; Avnir, DInorg. Chem.2001, 40, 318.
S((P) + kY S((T) - kPT (14) 2283 Alvarez, S.; Pinsky, M.; glunell, M.; Avnir, DCryst. Eng.2001, 4, 179.
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the deviation function defined above (eq 13). We show in Figure 0(Dy) = VNsina. (17)
7 the deviation function for three pairs of polyhedra P and T.
For the tetrahedron/square pair, characterized by a large angle o(Ty = Nsin B (18)

(0pt = 35.26), deviations of up to 0.05 are obtained by using
the sum rule for intermediate structures. In contrast, the cappedand the shape measures can be expressed as
octahedron/capped trigonal prism and triangular dodecahedron/

square antiprism pairs of polyhedra, with seven and eight S(Dy) = 100 sif o (19)
vertexes, respectively, characterized by small valuésp{see i
Table 1), give rather small deviation functions throughout the S(Tg) = 100 sin (20)

pathways (less than 0.004). These results confirm that the
deviations of the sum rule from the analytical expression are
much smaller for a path characterized by a smaller minimum

distortion angle. W «/%
4h . d

Appendix 2: Geometrical Interconversion Paths arCSinT + arCS'”T =@ (21)

Since, by definition of the spread pathway,+ g = ¢, it
follows that

The shape measures for the spread interconversion pathway . . - . o
between the tetrahedron and the squaiedan be defined Cgmparlsoh Wlth eg 11 indicates that the spread distortion is a
analytically in terms of geometrical parameters through a rather minimum distortive pa_th_way be_twee_n the te‘“’?‘h?dro.” and the
simple expression. Consider, e.g., the tetrahedron and the Squargquare and that the minimum distortion angle is in this gase
superimposed in such a way that the impropgrss of the as found by computation (Table 1).'
former is coincident with the £axis of the latter, as schemati- The pathway for thg plarlar|zat|on of an octahedron o a
cally depicted in7, where the square is represented in a side hexagon can be described in anglogous ‘em.‘s' aligningghe S
view (thick line) and the closest tetrahedron is superimposed and G axes of the two reference figures. In this case, the angle

(black continuous lines). The perfect tetrahedron is defined by between each ML_ bond in the hexagonal S”F*Ct“re. and the
closest M-L bond in the octahedral structure is agginand

Sy the path is defined in terms of the shape measures relative to
the octahedron@,) and the hexagonDgn) by the general
T expression of eq 11 in which the minimum distortion angle is

/>\ ﬁ-"" X againg.
{0 e 7

0/\ - eV SO0 S(Os)

10 + arcsin 0 ¢ (22)
Thus, the analytical expressions for these two interconversion
paths provide a geometrical meaning for the corresponding
minimum distortion angles and explain why they adopt the same
value in the tetrahedron-square and octahedron-hexagon cases
the tetrahedrong. = 0° for the square). Prior to scaling, the (Table 1). An important co_nclusi_on is that only for those
distances of all vertexes to the center are assumed to bepolyhedral rearrangements in which th? vertexes of the two
normalized in the sense of eq 3. Since the shape measure 0§hapes can be related by means of a single angular parameter
structure X is given by the sum of the squares of the distances'S there a clear correspondence between that parameter and the

of its vertexes to those of the reference structig, Or Tq), ?Qg:rgn;"?ﬁ;ﬂ?h an(grlseﬁér:f the corresponding &
scaled to minimize that distance, OPX and OTX angles must : : pe nhypersp )
be right angles. Therefore, for each ligand, JA036479N

Q= arcsin[ll\/é]. Any structure X along the spread pathway
that retains thd,q symmetry can be defined by the deviation
of the four ligands from thexy plane by an angle. (positive
values for two ligands, negative for the other two= ¢ for
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